Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. J. Pharm. Sci. (Online) ; 59: e22320, 2023. tab, graf
Article in English | LILACS | ID: biblio-1439541

ABSTRACT

Abstract Flaxseed (Linum usitatissimum L.) is the seed of a multipurpose plant of pharmaceutical interest, as its mucilage can be used as a natural matrix to develop extended-release dosage forms and potentially replace synthetic polymers. In this study, a 3² factorial design with two replicates of the central point was applied to optimize the development of extended-release granules of metformin HCl. The total fiber content of the mucilage as well as the friability and dissolution of the formulations were evaluated. The lyophilized mucilage presented a high total fiber content (42.63%), which suggests a high efficiency extraction process. Higher concentrations of the mucilage and metformin HCl yielded less friable granules. In addition, lower concentrations of metformin HCl and higher concentrations of the mucilage resulted in slower drug release during the dissolution assays. The release kinetics for most formulations were better represented by the Hixson-Crowell model, while formulations containing a higher concentration of the mucilage were represented by the Korsmeyer-Peppas model. Nonetheless, five formulations showed a longer release than the reference HPMC formulation. More desirable results were obtained with a higher concentration of the mucilage (13-18%) and a lower concentration of metformin (40%).


Subject(s)
Flax/classification , Plant Mucilage/agonists , Metformin/analysis , Plants/adverse effects , Polymers/adverse effects , Pharmaceutical Preparations/analysis
2.
Braz. J. Pharm. Sci. (Online) ; 54(2): e17459, 2018. tab
Article in English | LILACS | ID: biblio-951930

ABSTRACT

ABSTRACT Linseed hydrogel (LSH) was evaluated by acute toxicity for its potential application in oral drug delivery design. White albino mice and rabbits were divided in four groups (I-IV) and different doses of LSH (1, 2 and 5 g/kg body weight) were given except to the control group (I) that was left untreated. Rabbits were monitored for eye irritation, acute dermal toxicity and primary dermal irritation, whereas, body weight, food and water consumption, hematology and clinical biochemistry, gross necropsy and histopathology of vital organs were scrutinized in mice. LSH was considered safe after eye irritation test as no adverse signs or symptoms were seen in the eye. In dermal toxicity and irritation study, skin of treated rabbits was found normal in color without any edema or erythema. After oral administration, there was no sign of any abnormalities in treated group animals (II-IV). The hematology and clinical biochemistry of treated group animals was comparable with the control group. Histopathology of vital organs has not shown any lesion or abnormalities. In the light of these outcomes, it can be concluded that LSH is not a hazardous biomaterial and could be incorporated as an excipient in oral and dermal preparations.


Subject(s)
Animals , Male , Female , Rabbits , Rats , Polysaccharides , Flax/classification , Hydrogel, Polyethylene Glycol Dimethacrylate/analysis , Drug Liberation , Administration, Oral , Toxicity Tests, Acute/methods , Hematology
SELECTION OF CITATIONS
SEARCH DETAIL